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Abstract. In this paper, the screened Coulomb interaction between two charged particles 
near a vacuum-solid interface is calculated in the presence of a quantising magnetic field 
which is perpendicular to the surface. The infinite-potential-barrier model is assumed and a 
background dielectric constant is includedin the bulk dielectric function to simulate different 
types of material. Closed-form analytical expressions are derived when both charges are on 
the same side of the surface and also when one is in the vacuum region and the other is 
embedded within the plasma. In the latter case, numerical results are obtained in the 
quantum strong-field limit. On the assumption that the test charges are both far away 
from the surface, and on opposite sides of it, asymptotic expressions are obtained for the 
electrostatic Coulomb interaction. When the source is in the material medium and the field 
point is outside, the interaction potential decays at large distances according to a power law. 
However, when the source is outside and the field point is inside, the potential has a Friedel- 
Kohn wiggle. 

A preponderance of solid state phenomena is a consequence of the Coulomb interaction 
and involves the application of electric and magnetic fields to solid surfaces from where 
they communicate with the bulk. Therefore it is of some considerable interest to examine 
how the interaction potential between internal and external probes, such as electrons, 
atoms and ions, is modified by the presence of a surface. In this paper, we derive 
expressions for the Coulomb interaction when a strong magnetic field is applied per- 
pendicular to the boundary plane between a quantum electron plasma and a vacuum 
region (figure 1). We include the electron-electron interactions by means of the random- 
phase approximation (RPA), and the infinite-barrier model (IBM) is employed to describe 
the boundary surface. We are particularly concerned with how the screening of the 
interaction between two test charges is affected in the surface region and how this 
interaction approaches the well known bulk behaviour as the charges recede into the 
plasma. For simplicity, we have limited our calculations to the so-called high-field 
quantum limit (HFQL), where all electrons are condensed into the highly degenerate 
lowest Landau level. This situation is at present realisable only for a few systems, such 
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Figure 1. Geometry for the IBM. 

as doped narrow-gap semiconductors, and our results might apply to Shubnikov-de 
Haas or cyclotron resonance in such substances. To apply them to data that are at present 
available, however, the calculations will have to be extended to lower magnetic field 
strengths. Nevertheless, we feel that the present calculation represents an important 
first step. 

In this paper, the magnetic field is applied in the z direction perpendicular to the 
boundary plane of the quantum plasma of background dielectric constant occupying 
the half-space z > 0 (see figure 1). The electron-electron interactions are treated in the 
RPA, and the IBM is employed to describe the boundary condition of specular reflection 
for electrons at z = 0. 

Over the years, several researchers have calculated the screened Coulomb inter- 
action between two chargedparticles both of which are situated either inside the quantum 
plasma or in the vacuum region outside [l-71. The present work is concerned with 
magnetic field effects on the shielded potential between an impurity at ro = (0 ,  0, zo) and 
a field point on the opposite side of a planar surface. Quantum interference effects due 
to electron wavefunction reflections at the infinite potential barrier will be neglected. 
Our method of calculation is based on the use of the inverse dielectric function for a 
semi-infinite quantum plasma which has been determined in the literature for the 
diagonal approximation [3]. In this paper, we study the effect on the Coulomb interaction 
due to a magnetic field which was not discussed in [ 11. In this context, [8-101 are suitable 
references for the HFQL. 

If the potential U(r)  is impressed on a system described by the inverse dielectric 
function 

K(r, r ’ )  = K(R - R ’ ,  Z ,  2’) (1) 

V(r)  = dr’  K(r ,  r’)U(r’).  ( 2 )  

(the frequency dependence is suppressed throughout), then the screened potential is 

I 
In the IBM geometry shown in figure 1, it is convenient to take the position vector r = 
( R ,  z )  and the wavevector q = (Q, q z ) .  Defining the two-dimensional Fourier transform 
parallel to the interface by 

F(Q, z )  = d * R exp( -iQ R )  F(R, z )  

we obtain from equation (2) 

( 3 )  
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2 n Z e  I: 

V(Q, z )  = - 1 dz‘  K(Q, 2, z‘) exp(-Qiz’ - zoi) 
Q o  

(4) 

for an impressed Coulomb potential due to an impurity charge of strength Z at r0 = 
(0, 0, zo)  on the polar z axis. It is the longitudinal part of the dielectric tensor that enters 
our screening calculation, which, even in a constant magnetic field, is diagonal. Of 
course, the transverse part will have non-diagonal terms. 

For a semi-infinite quantum plasma, described by the longitudinal dielectric function 
E ( q )  E(Q,  q,),wesubstitute K ( Q ,  z ,  z’)inthediagonalapproximation[3]intoequation 
(4) and obtain 

P X  \ 

where 

Four cases are possible, depending on the signs of z and zo.  We Fourier transform 
equations ( 5 )  back to R-space using the inverse of equation (3): 

1 P Z  

We obtain the following. 

For case I ( z  < 0, zo  < 0): 

For case I1 (2 > 0, zo > 0), 

For case I11 ( z  < 0, zo > 0), 
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For case IV ( z  > 0, z o  < O), 

(11) 

( Jo(x) is a Bessel function.) Further progress depends on determining the Q-dependence 
of the quantity v ( Q ,  z )  defined by equation (6). For a dispersionless dielectric medium 
with E ( q )  = E ~ ,  we have v ( q ,  z )  = exp(-QIzl)/QE, and equations (8)-(11) become 

Here we have introduced an image charge at r; = (0, 0, - z o ) .  
In many situations, including the electron gas in the HFQL in which all electrons are 

confined to the lowest Landau state, the bulk dielectric function E ( q )  depends only 
weakly on Q for small values of this wavenumber and we have [9] 

With the exception of case 11, we can take advantage of equation (15) to estimate V(r)  
for large values of Iz/ and lzo/ .  Let v(z) denote the first termin equation (15) andconsider 
the second (image) term in equation (8). Since / z  + zoI is large, by Watson's lemma (see, 
e.g., [11]) the asymptotic behaviour of the integral in equation (8) is dominated by the 
small-Q behaviour of the integral. After a little algebra, equation (8) yields 

V I ( r )  = Ze/lr - rot - Ze/lr - r;lI + 2Zev(O)Iz + zoi/lr - roI3. (16) 

Applying this procedure to equation (10) and assuming that z is large and negative, we 
obtain 

vIIIw = 2(~e/ r3)1z i .  (17) 

VIv(r) = 2Zev(z)/zol/lR2 + ~ 6 1 ~ ' ~ .  
Similarly, for z o  large and negative, equation (11) yields 

(18) 

This shows that, for example, in the HFQL the screened potential in the half-space 
opposite to the charge decays in the transverse direction as R-3. The possible existence 
of the Friedel-Kohn wiggle requires an analysis of v(z) which we now consider. 

In the HFQL for small values of Q ,  we have [8] 

4% 41) = E o  - (4Jce2/q1)po(m"/2n25)1'2 lnl(q, - 2 q F ) / ( q z  + 2qF)l. (19) 

Here po is the electron number density in the bulk medium, 5 = h2q$/2m* is the 
magnetic field-dependent chemical potential andm* is the effective mass of the electron. 
For a fixed number of electrons, the chemical potential has to change with magnetic field 
since the degeneracy of the Landau levels varies with the magnetic field strength. (For 
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Figure 2. Plot of the screened Coulomb potential V ( R  = 0, z ) /Zeq ,  given by equations (10) 
and (11), as a function of qFz, when (a) the Coulomb impurity lies within the plasma on the 
polar z axis at a distance zu = 2qF’ and the field point coordinate lies outside in the vacuum 
region and ( b )  the impurity lies in the vacuum at zu = -qF’ on the polar z axis and the field 
point is inside the plasma: - , for a background dielectric constant E,, = 10.94; ---for 
E o =  1. 

a full discussion of the magnetic field dependence of the chemical potential, see 9 I11 of 
[12]). Substituting equation (19) into equation (15) and setting Q = 0, we obtain 

where A = 2 ~ e ~ ~ ~ / q & [ .  Since the integrand is analytic at x = 0, the leading asymptotic 
behaviour must be due to the logarithmic singularity of the integrand at x = 2. After 
some algebra, we obtain (see the Appendix for details) 

v(z) = -4 cos(2qF)Z/{;1q’,/zl[1n(qF/zl)12} + o[1/1n(qFlzi)]3 (21) 
which shows that the leading order term for v(z) is independent of the background 
dielectric constant so. Employing equation (21) in equations (17) and (18), we obtain 
for both IzI and Izo/ large 

vIII(r) E - 8Zelzl cos(24Fzo>/{h4:r31z0/[1n(qF/201)12} (22) 
and 

V I V ( r )  E -8Ze/zO I c o ~ ( 2 q F z ) / { ~ ~ ’ , ~ z ~ ( R z  + ~~>3”[ ln (qF lz~) ]2> .  (23) 
In this paper, we offer a numerical RPA evaluation of VIII and VI, when the test 

charges are on opposite sides of the surface, displaying the role of the background 
dielectric constant appropriate to semiconductors in which the quantum strong-mag- 
netic-field limit can be achieved. The appropriate bulk dielectric function ~ ( q )  for such 
a full static shielding analysis in the quantum strong-field limit has been given in [8]. 
Employing this in equation (6b)  and then evaluating the integrals in equations (10) and 
(ll), we obtain numerical results for V(r)  shown in figure 2 for R = 0 and values of 
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q F l ~ O /  2 1 so that the role of the omitted quantum interference terms may be expected 
to be relatively unimportant in accordance with the results in [6]. In the calculations, we 
take the magnetic field H = lo5 G and for GaAs we use an electron effective mass m* = 
0.0665me, bulkdensitypo = 10l6 ~ m - ~ ,  eo = 10.94, Fermiwavenumberq, = 0.0013 A-', 
chemical potential c = 9.65 x eV and cyclotron frequency w, = 2.65 x 1013 s-l. 
Since ho,/c > 1 for these values, the quantum strong-field limit is achieved, and only 
the lowest Landau eigenstate is occupied. We note the Friedel-Kohn wiggle in the RPA 
shielded potential shown as a function of distance from the boundary (for R = 0) in all 
parts of figure 2(b ) .  In addition to the full curves which show V ( z )  for GaAs with = 
10.94, the corresponding results for = 1 (but with all other numbers characteristic of 
GaAs the same as indicated above) are shown as broken curves to emphasise the 
importance of incorporating the proper value of c0. The case of the source lying inside 
and the field point outside in the vacuum region (case 111) differs substantially from the 
case when the source and field points are interchanged (case IV). In the former case, 
there is no charge present in the outside region and therefore no Friedel-Kohn wiggle 
of density or potential is possible. This is demonstrated numerically in figure 2(a) and 
analytically by the long-distance asymptotic result in equation (22). However, for case 
IV the density perturbation of the inside region is capable of sustaining a Friedel-Kohn 
wiggle which is demonstrated in figure 2(b )  and also for large distances by equation (23). 
It is to be noted that under the high-magnetic-field conditions which we are concerned 
with here (the quantum strong-field limit in which all electrons are confined to the lowest 
Landau state), the Friedel-Kohn wiggle contribution to the shielded potential dies off 
with distance as {qF~Z~[ln(~~1Z1)]2}-1 for source-field displacements perpendicular to the 
surface. On the contrary, for displacements parallel to the surface and perpendicular to 
the magnetic field direction, the potential decays with distance as ( R 2  + z ; ) - ~ / ~ ,  a pure 
power-law behaviour. 

Appendix 

In this Appendix, we evaluate the integral 

for large values of q,z. The integrand is analytic at x = 0 so that, for large qFz, the integral 
is dominated by the logarithmic singularity at x = 2. Hence there will be oscillations 
-cos(2qFz) within ~ ( z ) .  

Consider the integral 

where a, b and a are all real quantities. We now calculate Q, for a+ =. Since the 
integrand decays exponentially in the upper half of the complex z plane, we can deform 
the contour as shown in figure Al .  Since the integrand decays exponentially on C3 and 
C4, we obtain 

/ r  z e x d i m )  r 
' z3  + b ln/(z + a)/(z - a)l/ 
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Figure A l .  Contour of integration of equation 
0 x = u  (A3). 

where Re(x) stands for the real part of x .  If we set z = iu on CO, the resulting integral is 
purely imaginary and so does not contribute to q(a). Let z = a + iu on C1 and C2. 
Therefore, we obtain 

(a  + iu) exp(-au) 
[ (a  + i ~ ) ~  + b ln(2a + iu) - b In U]’ + ( 1 ~ b / 2 ) ~  q(a) = - n b  Re exp(iaa) d u  ( 

(A4) 

By Watson’s lemma [ 111, the dominant behaviour as a + is 

exp( - au)  
q(a) = -nab Re exp(icra) du-  i JOE (a3 + b In 2a - b In U)’ + (nb/2)* 

That is 

But 

Hence 

q(a) = --[nu cos(aa)/ba(ln a)2][l  + O(l/ln a)] .  (A71 

From equation (A7), we obtain the asymptotic value of v(z) in equation (Al). This 
large-distance behaviour is given in equation (21). 
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